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Abstract

While tcpdump is an invaluable monitoring tool that has
held up remarkably well for over a decade, it is showing
its age. Network speeds have recently outstripped the abil-
ity of ‘stock’ tcpdump running on commodity hardware to
keep up with the network, rendering it incapable of mon-
itoring traffic at gigabit-per-second (Gbps) speeds. Tests
over Gigabit Ethernet showed that tcpdump could monitor
and record traffic at speeds no greater than 250 Mbps with
O(ms) time granularity.

To achieve monitoring at Gbps speeds and O(ns) time
granularity with commodity parts, we present TICKET – the
Traffic Information-Collecting Kernel with Exact Timing.
TICKET combines efficient commodity-based hardware and
software in an architecture that hides disk latency and band-
width.

Keywords: TICKET, tcpdump, libpcap, traffic collection,
high-performance networking, passive monitoring.

1. Introduction

The TICKET architecture makes use of two or more
commodity PCs. The first PC captures packets in real time,
collects relevant data from the packets, and forwards in-
formation gathered to one or more additional PCs. These
then save, display, or continue processing the data. The
inherent distribution of tasks among multiple machines al-
lows TICKET to scale where other approaches (such as tcp-
dump/libpcap or RMON devices) can not.

Traffic monitors that rely on tcpdump/libpcap-style pro-
cessing [3, 4] gain ease of use at the cost of performance.
Design decisions, such as forcing all collection, analysis,
and display to be performed on a single machine, as well
as implementation decisions, such as single-packet copies

from kernel level to user level, mean that tcpdump and libp-
cap cannot scale to today’s Gbps network speeds. Likewise,
while traffic monitors complying with the RMON specifica-
tion [10] have more potential to scale, actual implementa-
tions from prominent companies fail to reach this potential.

Thus, we present TICKET – the Traffic Information
Collecting Kernel with Exact Timing. TICKET is a passive
monitor that combines efficient, commodity-based software
with a commodity-based hardware architecture that hides
disk latency and bandwidth. TICKET provides a scalable,
high-performance methodology for collecting high resolu-
tion information about all traffic traversing a single network
link. TICKET and the information collected by TICKET
can then be used to improve network protocols, provide in-
sight into how to allocate network resources and improve
network design, enable fast detection and correction of net-
work problems, or enhance cyber-security.

This paper first presents background information on
computing trends with their relevant implications. We then
discuss traffic collection infrastructure and other related
work. We continue with our methodology, how it is unique,
and how it has been implemented. Next we consider some
experiments and practical results using the system, before
concluding with a final analysis.

1.1. Computing Trends

Network speeds have been increasing at an incredible
rate, doubling every 3-12 months [2]. This is even faster
than one version of “Moore’s Law” which states that pro-
cessing power doubles every 18-24 months; an observation
made in 1965 which is still remarkably accurate [6]. More-
over, although disk sizes have been increasing dramatically,
disk and bus bandwidth have been increasing almost lin-
early; much more slowly than the exponential growth in
other areas. In short, the disparity between network, CPU,
and disk speeds will continue to increase problematically.



For example, consider one point in time among these
trends: today. Table 1 gives the results leading-edge re-
searchers have shown for various computer components,
and the results that are generally considered “commodity”.

Research Commodity
Network 6.4Tbps 1.0Gbps

Processor 64-bit/4.0GHz 32-bit/1.0GHz
Memory 64-bit/333MHz 64-bit/133MHz

Accessory 64-bit/133MHz 32-bit/33MHz
Disk 160MBps 20MBps

Network 6400.0 Gbps 1.0 Gbps
Processor 256.0 Gbps 32.0 Gbps
Memory 21.3 Gbps 8.5 Gbps

Accessory 8.5 Gbps 1.1 Gbps
Disk 1.3 Gbps 0.2 Gbps

Table 1. Raw and Converted Speeds of Re-
search and Commodity Components

The units in this table are Terabits per Second (Tbps,
1012 bits per second), Gigabits per second (Gbps,109 bits
per second), Gigahertz (GHz,109 cycles per second), and
Megahertz (MHz,106 cycles per second). The upper half of
the table has given values in their common units, while the
lower half converts these values to Gigabits per second for
approximate comparison. Note that while these conversions
are somewhat naive, they give the benefit of the doubt en-
tirely to the opposing point. Observingeffectivespeeds, ac-
counting for bus arbitration, cache coherency, and so forth
decreases the values for Processor, Memory, Accessory, and
Disk, with Network speeds remaining nearly constant.

The research values were derived as follows: Nortel Net-
works (among others) demonstrated 6.4 Tbps as far back as
1999, while super-cooled Intel Itanium processors, PC-166
memory, the PCI-X interface, and the Wide Ultra3 SCSI
disk interface complete the table.

1.2. Implications for the Future

Predicting the future is always risky, yet most analysts
agree that there are enough new manufacturing methods,
designs, and physics “in the pipe” that these trends will con-
tinue for some years to come. Of critical importance is the
fact that networks are becoming optical while computers are
still fully electronic.

The implications of these trends are critically impor-
tant. What we wish to point out (and that Table 1 should
make clear) iscommodity hardware and conventional meth-
ods will not suffice to capture traffic in the future. As re-
search technology becomes commodity, tcpdump/libpcap
style processing [3, 4], will have neither the requisite pro-

cessing power, nor the disk bandwidth available to handle
fully saturated network links. Any such single-machine de-
sign, no matter how well implemented, will soon be unable
to “keep up” with the network.

Consider another example: field tests of tcp-
dump/libpcap running on a 400-MHz Pentium III Linux
machine over a Gigabit Ethernet (GigE) backbone showed
that tcpdump could monitor traffic at speeds no more than
250 Mbps with O(ms) time granularity. At times of high
network utilization (≈85%), over half of the packets were
lost because it could not handle the load.

Addressing disk and accessory bandwidth by using
RAID systems [8] as network-attached storage (NAS), and
the memory integrated network interface (MINI) paradigm
[5] is possible, but both are still somewhat expensive. Mem-
ory bandwidth issues have been addressed by technology
such as RAMBUS or simple increases of processor cache
size, but these techniques have failed to live up to their po-
tential. We have tried using these approaches, in combina-
tion with highly tuned commodity-based monitors and even
a prominent commercial monitor (Section 1.3). Unfortu-
nately, we found them expensive and still lacking – suscep-
tible to the same trends shown above. We realized that there
was a need for a new, specialized monitoring methodology.
This is what TICKET provides.

1.3. Related Work

We have implied that some other work has limitations
that TICKET addresses, here we provide more detail. Most
of these limitations are due to trade-offs where existing so-
lutions have made different choices than TICKET. Table 2
summarizes prominent features, and discussion follows. We
then discuss other approaches including tcpdump/libpcap
and RMON devices in more detail.

Other Approaches TICKET
Not scalable Scalable
Not very efficient Very efficient
Very easy to use More difficult to use
O(us) resolution timers O(ns) resolution timers
Someare portable Not portable
Somenot real-time Can perform in real-time
Someare unreliable Highly reliable
Brute-force capture Parsing capture
Free to very expensive Free to inexpensive

Table 2. Features of TICKET and Other Ap-
proaches



Scalability refers to forcing use of a single machine or
processor rather than allowing use of SMP or cluster sys-
tems. On a single machine, the collection task can require
so much processing power that too little remains to actually
doanything useful with the data.

Efficiency, ease of use, timer resolution, portability, and
real-time factors resolve to a user level versus kernel level
trade-off. Most other approaches are user level applications
tied to their operating system’s performance and depend
upon system calls such asgettimeofday() . TICKET is
a dedicated operating system (OS) that runs at kernel level
and uses lower-level hardware calls such asrdtsc (read-
time stamp counter).

Reliability refers to issues with many implementations
that fail to keep up with network speeds, fail to maintain a
count of dropped packets, crash or hang during use.

Brute force applications take a a fixed, predetermined
“capture size” from each packet, while TICKET parses
packet headers on-the-fly and captures only data of interest.

TICKET is cheap, in terms of cost. Because there have
been no other options, many vendors offer custom hard-
ware solutions (RMON or otherwise) with proprietary soft-
ware at an exorbitant cost; some up to $200,000 or more!
TICKET provides options. Hardware to run TICKET can
be put together with commodity parts for less than $2,000.
The TICKET software will be available for free.

Tcpdump is an invaluable, easy-to-use, portable, free
tool for network administrators. It is designed as a user in-
terface application relying upon functionality contained in
the lower-level libpcap library, which has also been success-
fully used with other applications such as CoralReef [1].
Unfortunately, by nature tcpdump and libpcap have limi-
tations – due to decisions made concerning the trade-offs
listed above. In particular, libpcap executes on a single ma-
chine, using system calls to perform timestamps, performs
brute-force capture, and can be unreliable.

Furthermore, libpcap suffers from efficiency problems
pandemic to implementations of traffic collection at user
level. They must ask the operating system to perform the re-
quired packet copy in the network stack (for transparency),
which can double the time required to process a packet.
The exact method used by libpcap and other tools varies
by operating system, but always involves a context switch
into kernel mode and a copy of memory from the kernel
to the user level library. This “call-and-copy” approach is
repeated for every packet observed in Linux, while other
implementations use a ring buffer in an attempt to amortize
costs over multiple packets. At high network speeds, the
overhead of copying each individual packet between kernel
and user space becomes excessive enough that as much as
50% of the aggregate network traffic is dropped when using
tcpdump/libpcap over a GigE link.

RMON devices [10] contain some traffic-collection

functionality as well as some management functionality;
that is, they provide a superset of the functionality of tcp-
dump/libpcap but work in much the same way. However,
our RMON device from a prominent company suffers from
several problems. Although the management software pro-
vides a nice interface to the hardware RMON device, it also
introduces substantial overhead that limits the fidelity of
packet timestamps to O(seconds); this fidelity is a thousand
times worse than tcpdump and nearly a billion times worse
than TICKET. In addition, the packet-capture mode of the
RMON device often silently drops packets; the data-transfer
mode of the RMON requires an active polling mechanism
from another host to pull data across; and the RMON de-
vices themselves hang or crash often, e.g., every 36-72
hours.

1.4. Required Infrastructure

To collect traffic, we require a network interface upon
which a copy of all relevant network traffic is available.
This can be done using network stack operations, port mir-
roring, or a tap mechanism.

Network stack operations performed by the operating
system provide a copy of data to the libpcap program run-
ning on a given host. Libpcap may perform additional pro-
cessing before passing it on to tcpdump for display.

Port or interface mirroring is a technique by which the
traffic from one or more interfaces on a network switch (the
mirrored interfaces) is copied to another port (the mirroring
interface). In theory, this provides a mechanism to transpar-
ently observe traffic passing over the mirrored interfaces by
observing traffic over the mirroring interface. In practice,
this mechanism has problems.

One problem is that most implementations cause signifi-
cant performance degradation for the switch; packet timing
is skewed and many packets are dropped due to poor im-
plementation of the required copy. Another problem is that
nearly all today’s connections are full duplex: mirroring a
two-way stream onto a one-way (outgoing) port means that
we have a potential 50% loss rate. In this case two mirroring
interfaces are required, one each for incoming and outgoing
traffic.

A tap mechanism is a a piece of hardware that takes a
single network input and duplicates it to transparently pro-
duce two identical outputs. This can be thought of as a split-
ter or a switch performing half-duplex port mirroring. This
hardware works at the physical level (electrons or photons
“on the wire”) by splitting a physical signal and possibly
enhancing it.



2. Methodology

TICKET is split into two parts, running on separate
hosts. First is a highly efficient dedicated operating system
(OS) for initial traffic collection, and second is a set of user
level tools and scripts to further process, save, or display the
collected traffic. We discuss each in turn and then compare
this approach with others.

Using kernel code running as close to the hardware as
possible maximizes efficiency, scalability, and performance
in critical areas. As a dedicated system, it avoids extraneous
services competing for resources and decreasing security.
Furthermore, running entirely in kernel space means that no
context switches are required, and buffer copying is kept to
a minimum, e.g., data no longer has to be copied from ker-
nel space to user space. TICKET utilizes the cycle-counter
register to provide high-fidelity timestamps with accuracy
and precision thousands of times better than implementa-
tions of other approaches.

Using user level code maximizes usability and expres-
sive power. Less time-critical tasks such as saving to disk
are performed by this set of programs and scripts. The abil-
ity of the kernel level code to stripe across multiple user
level machines makes efficiency less of an issue and en-
ables highly complex analysis in real-time using clusters of
machines.

2.1. Simplest TICKET Configuration

The simplest configuration is just a TICKET kernel ma-
chine with one interface connected to a network tap of some
sort, and another interface connected to a second machine
running a user level program to print data to the screen.
This would be comparable to a single machine running tcp-
dump/libpcap.

The TICKET architecture is shown in more detail in Fig-
ure 1. This figure shows a logical view of the hardware
configuration and how processing is shared among multiple
hosts. TICKET first collects traffic from the network link
(A) via a network tap (B). The network interface card (D)
then collects traffic from the tapped network link (C), passes
the data over the peripheral PCI bus (E) to the main CPU
(F). The main CPU simply gathers the appropriate packet
headers and passes them back over the peripheral bus (G)
and network interface card (H) and onto a dedicated net-
work link (I) to one or more application boxes (J) for dis-
play and/or storage. If the network interface card (NIC) has
an on-board processor, this can be utilized to provide even
better performance (see Section 3 for details).

The architecture of monitors based on libpcap is a direct
contrast to the scalable infrastructure used by TICKET. As
Figure 2 illustrates, tcpdump-based monitors typically run
on a single bottleneck host (i.e., the “tcpdump box”). The

monitor gathers network traffic data from the network link
(A) via a network interface card (B) in promiscuous mode.
This data then crosses the peripheral bus (C) before entering
main memory and being processed by the CPU (D). Finally,
the data crosses another peripheral bus (E) to be written to
disk or a display device. Generally, there is little spare pro-
cessing power for data analysis.

D: Network Interface Card

E: Accessory (PCI) Bus

J: Application Box

I: Dedicated Network Link

F: Main Memory/CPU

G: Accessory (PCI) Buses

C: Tapped Network Link

B: Network Tap

A: Raw Network Link

H: Network Interface Card T
IC

K
E

T
 B

O
X

Figure 1. TICKET Hardware Configuration

A: Network Link

B: Network Interface Card

C: Accessory (PCI) Bus

E: IDE/SCSI/PCI/AGP Bus

D: Main Memory/CPU

F: Disk/Display T
C

PD
U

M
P B

O
X

Figure 2. Tcpdump/libpcap Hardware Config-
uration

With the adoption of a dedicated OS for TICKET, the
display and storage of data traffic become the bottlenecks
in the traffic collection rather than the first-level collection
and analysis (see Table 1). However, to address those bot-
tlenecks, we architect our TICKET machine to have multi-
ple, independent PCI busses and a Northbridge/Southbridge
structure capable of operating them concurrently at full
speed. When this is true, we can effectively split the traffic
with no loss – hiding disk bandwidth and latency.



2.2. Alternate Configuration One

The simplest configuration scales well beyond current
techniques, but all the traffic still passes through a single
host. To scale even further, e.g., 10 Gbps, we must avoid
the 64-bit/66-MHz PCI bus limitation of 4.2 Gbps. Figure
3 shows how TICKET can be configured with multiple taps
to reach even higher network speeds.

A: Raw Network Link

B: Network Taps
C: Tapped Network Link

D: Ticket Box
E: Application Boxes

Figure 3. TICKET Configuration with Multiple
Taps

This figure shows multiple TICKET boxes attached to
the same wire. This removes the requirement that all traffic
move through a single host. However, this approach only
works if the following conditions hold.

1. Each network tap can be configured to split off only a
given subset of traffic, or each NIC is capable of pro-
cessing link-level packet headers at full link speed.

2. The union of the sets of traffic that the TICKET ma-
chines handle covers the original set of traffic.

3. There exists a globally synchronized clock.

The first condition is true when multiple wavelengths are
used on a single optical fiber. Such a scenario is becoming
more common as the cost of dense wavelength division mul-
tiplexing (DWDM) falls. In this case, each tap splits a sin-
gle wavelength or set of wavelengths from the fiber for pro-
cessing. (Alternatively, we can connect the network tap to a
switch’s uplink input and then rely on the switch hardware
to demultiplex the input to multiple TICKET machines, as
shown in Figure 4.)

The second condition generally follows if the network
tap has been properly installed. Subsets of traffic collected
by each TICKET machine need not be disjoint (although
this is desirable); post-processing of the collected traffic can
remove duplicates based on the collected headers and accu-
rate timestamps.

The third condition can be addressed by the network time
protocol (NTP) [7]. However, NTP only provides clock ac-
curacy on the order of a millisecond. If data sets are not

entirely disjoint (some packets with their associated times-
tamps are seen in multiple data sets), or if we dedicate a
hardware interface solely to synchronization and manage-
ment, then we can provide the highly accurate synchroniza-
tion desired.

2.3. Alternate Configuration Two

To this point, we have focused on using commodity hard-
ware to perform network monitoring tasks. Unfortunately,
this may not always be possible as the speed of core net-
work links mayalwaysoutstrip commodity hardware. In
this case, we can use the alternative TICKET configuration
presented in Figure 4.

A: Raw
Network
Link B: Network Tap

C: Switch Fabric

D: TICKET
hardware

E: Application Boxes

Figure 4. TICKET Switch-Fabric Configuration

Figure 4 shows how TICKET might be implemented in
hardware analogous to a network switch (or even using a
commodity switch with predefined routes to appropriately
split traffic). Instead of a switch uplink, we have a net-
work tap (B) that copies traffic off of a network link (A).
Instead of a true many-to-many switch fabric, we require
only a simplified one-to-many demultiplexer (C). This fab-
ric would connect to lower-speed network links (just as a
switch would) to which we can connect TICKET machines
as described earlier during the discussion of port mirroring.
Alternatively, simple chips could implement TICKET func-
tionality and be integrated with this device, leaving only the
application boxes (E) separate.

This architecture is obviously quite different than the
tcpdump/libpcap style of collecting traffic, but it is some-
what similar to the RMON specification [10]. It differs in
two fundamental ways: First, TICKET pushes data to the
application boxes whereas application boxes must poll the
RMON device for data, i.e., pulls the data from the RMON
in the RMON specification. Second, the individual network
probe of the RMON is replaced with our explicitly parallel
TICKET methodology.



3. Implementation

At the moment, the first configuration discussed above
suffices for gigabit Ethernet. We implemented this on Intel-
based x86 hardware and made heavy use of the source
code for the Linux kernel [9]. The software portion of
TICKET amounts to a heavily stripped Linux 2.4 kernel
with the init() function replaced by code that imple-
ments the TICKET core functions. This approach leverages
a pre-existing code base (scheduler, virtual memory, device
drivers, hardware probing) and frees us to focus on writing
the most efficient TICKET code possible.

3.1. Creating a Minimal Kernel

We used what initially appears to be a roundabout pro-
cess to create a stripped Linux kernel, but it provides a much
smaller and cleaner end-product. Our initial goal sought to
create a source tree containing a truly minimal set of files
required to build a kernel for our hardware.

First, we configured and built a monolithic Linux 2.4 se-
ries kernel from the stock sources using regular Linux ker-
nel configuration tools, making sure to save the build output
for later. This kernel includes support for the hardware we
wish to run on, and the build output tells us exactly which
source files are used to create our kernel. At this point, we
can create a parallel TICKET development tree using just
the files actually built into this kernel. This is only for aes-
thetic and size reasons – a parallel tree is “cleaner” and re-
quires about 15% the space of a stock tree.

This Linux kernel is still a fully functional operating
system at this point, stripped only of unused code for a
given machine. The next step is to further remove ser-
vices and functionality unused by TICKET that would re-
duce performance. For the uniprocessor hardware on which
we run TICKET, the only required changes were replacing
the init() function with a call to our TICKET code1 re-
moving calls to the/proc filesystem, and removing hard-
coded hardware probes for non-existent devices. Other im-
plementations may wish to turn off virtual memory han-
dling (which under some versions of Linux will aggres-
sively place pages into disk swap even if there is main mem-
ory available, seriously decreasing performance), remove
printk statements, and so forth.

Now we are left with an absolutely minimal kernel to
manage low-level hardware tasks and provide a useful Ap-
plication Programming Interface (API), which we use to ac-
tually program TICKET.

1init() , causes the first switch to user level, so removing it avoids
this switch and thus any user level code execution.

3.2. TICKET Core Details

The core sequence of events for any implementation of
TICKET is shown in this list, with further discussion of
each point following below:

1. The kernel initializes, probes hardware, and calls
TICKET as the sole thread of execution.

2. TICKET parses the kernel command line for options.

3. TICKET brings up network interfaces and waits for
link negotiation.

4. TICKET calls a “mode” function; in this case, traffic
collection.

5. TICKET executes the following operations “forever”

(a) Receive a packet and timestamp it.

(b) Collect information about that packet.

(c) If output buffer is full, select interface to send and
enqueue.

(d) Send pending output.

First the initial boot-up process occurs, with all the low-
level BIOS calls and so forth that are performed by our
stripped kernel, before any TICKET code is called.

Next, we make use of the ability to pass kernel
command-line arguments. This flexibility allows us to pass
TICKET configuration information, such as IP addresses or
modes. The “mode” function of Step 4 was added so that
the TICKET framework can also be used to perform related
tasks, like network flooding for testing, or to enable “Appli-
cation Layer” functionality that is logically separate from
TICKET.

“Forever” in the following step generally means until
ctrl-alt-del is pressed, or a specially formatted link-
level “reboot” packet is sent to the machine. As TICKET
runs on general-purpose hardware, one could conceive of
security risks by placing such a machine on a network back-
bone. The passive nature of TICKET and the inability to
modify parameters without a reboot currently addresses this
problem.

We currently perform timestamps as packets enter the
network stack on thehostCPU; this implicitly assumes that
there is a fairly constant delay between packet arrival “off
the wire” and the time it enters the network stack via a DMA
by the NIC and a host interrupt. Some hardware specific
configuration is required to ensure this works, which we
discuss in Section 4.



The information collected by the current implementation is
as follows:

• 64-bit timestamp

• Length “off-the-wire”

• Ethernet Information:
– Addresses of Source and Destination
– Type of service or 802.3 Length

• IP information
– Addresses of Source and Destination
– Lengths of Packet and Header
– Protocol Number

• TCP/UDP information
– Ports of Source and Destination
– Length of UDP packet or TCP header

This information is in our opinion the minimal but most
useful subset of data available. Some redundancy is in-
cluded with lengths for checking validity of packets. In
practice, this resolves to about 42 bytes of data per packet,
which means we are collecting about61

2% of the total traf-
fic given a 650-byte average packet size. The information
collected can, of course, be easily changed.

At this point, we have reduced our input traffic by a fac-
tor of 20, on average. The remaining data is to be sent to the
user level machine for saving or further analysis. We wish
to minimize the overhead of sending packets on the outgo-
ing link, so we buffer our results until we fill a packet. This
packet is then enqueued for sending, and the device driver
sends it asynchronously. Given our 42-byte data collection
per input packet and 1500-byte Ethernet MTU, we send the
results from about 34 input packets per output packet.

4. Performance Evaluation

The only really useful measure of performance is
whether the monitor can “keep up” with the network – in
our case, that means 1Gbps Ethernet. This section will first
discuss what we are testing, then how we are testing, and
then the results and analysis for each of the various tests.

4.1. Experimental Dimensions

In our tests, we we consider four representative dimen-
sions:

• TICKET vs. tcpdump

• Slow vs. fast collection machine

• Saving data vs. not saving data

• One interface vs. two interfaces

The first parameter, “TICKET vs. tcpdump,” is used to
compare the performance of a very commonly used tool
with TICKET.

The second parameter, “slow machine vs. fast machine,”
is used to compare performance of tcpdump or the TICKET
kernel on different hardware. The “slow machine” is a
dual-processor 400MHz Pentium II machine with a single
32bit/33MHz PCI bus and 128MB of PC-100 memory. The
“fast machine” is a uni-processor 933MHz Pentium III ma-
chine with both a 64bit/66MHz PCI bus and a 64bit/33MHz
PCI bus, and 512MB of PC-133 memory. Both machines
have IDE drives, one or more AceNIC Gigabit Ethernet
cards with the Tigon II chipset, and a single EtherExpress
Pro 100Mb Ethernet card for management.

The third parameter, “saving data vs. not saving data”, is
only for tcpdump. It means whether data is saved to a real
file via tcpdump -w FILE or whether it is thrown away
via tcpdump -w /dev/null . TICKET always saves
data, but not on the host collecting data; testing tcpdump
without saving data mimics this behavior.

The case of tcpdump not saving data is analogous to a
user level implementation of TICKET; it does not save data
locally and we can think of it using another machine to save
that data instead. This analogy allows us to quantify the ef-
fect of each of the major differences between TICKET and
tcpdump: (a) single-machine vs. shared among machines,
and (b) user mode vs. kernel mode execution.

Comparing tcpdump saving and tcpdump not saving can
be thought of as a comparison between the user level tcp-
dump and a user level implementation of TICKET – show-
ing the effect of single-machine vs. multiple machine exe-
cution.

Comparing tcpdump not saving data and TICKET can
be thought of as a comparison of user level and kernel
level TICKET implementations – showing the effect of user
mode versus kernel mode execution.

The fourth parameter, “one interface vs. two interfaces,”
allows us to eliminate possible bottlenecks with a single in-
terface. Most switches allow configuration of a load-sharing
group, where multiple interfaces are grouped into a logical
interface, and data is striped among them. This idea will
show how an approach scales to utilize multiple input and
output interfaces.

4.2. Experimental Setup

We build a network in the simplest TICKET configura-
tion (a single kernel machine connected to a network tap
with one or more user level machines post-processing data)
and measure how much traffic is analyzed while varying
each of the parameters listed above. The more complex
configurations listed in Section 2 are not yet required for
today’s networks.



The dump machine is only used by TICKET; tcpdump
runs entirely on the collection machine discussed in the pre-
vious section. The hardware for the dump machine is an In-
tel L440GX+ motherboard with dual 500MHz Pentium III
processors and 1GB of 100MHz ECC DRAM. It contains
1.2TB of disk space that is split among three RAID-5 arrays
of size 375MB, 375MB, and 525MB. Each RAID is made
up of several 80GB Maxtor DiamondMax hard drives and
a 3Ware Escalade 6800 8-channel Ultra ATA RAID con-
troller. The largest RAID-5 array, one of the 375MB arrays,
and AceNIC Gigabit Ethernet card share a 32bit/33MHz
PCI bus (due to space constraints in the case), while the
remaining 375MB array is on a separate 64bit/33MHz PCI
bus. Sharing the smaller bus among so many cards creates a
bottleneck; thus, we use a full gigabyte of memory to allow
a large amount of buffering.

The software we are using is TICKET, version 1.0 alpha2

When comparing these values with tcpdump/libpcap, we
use the prepackaged Debian Linux stable versions – libp-
cap 0.6.2-2 and tcpdump 3.6.2-2.

The physical configuration of our network is shown in
Figure 5. We set up two TICKET machines in “traffic gen-
eration” mode; using the kernel level framework to gener-
ate almost exactly 500Mbps of traffic in 1066-byte UDP
packets (1024 bytes data, 42 bytes of UDP, IP, and Ether-
net headers). This traffic aggregates to 1Gbps at our GigE
switch (Extreme Networks’ Summit 7i), which then for-
wards it to the collection box running TICKET or tcpdump.
The collection box processes the data and either sends it to
the dump RAID box via a crossover cable to be saved to
disk or saves it locally. This data can then be checked for
errors or packet loss, or any other arbitrarily complex anal-
ysis. All NICs in these systems are of the copper variety.

Generator1Generator0

Gig−E
Switch

TICKET RAID
Dump

Figure 5. TICKET Verification Test Setup

For simplicity, this figure only shows gigabit Ethernet
links. In practice, each machine is also part of a separate
fast Ethernet network for management, and some have se-
rial connections for remote consoles.

2This will be released to the public under the Gnu Public License (GPL)
in the near future. Check our web site, http://www.lanl.gov/radiant.

4.3. Experimental Results

We present pairs of graphs showing the same test per-
formed on the “slow” and “fast” machines. Measurements
are made by observing statistics at the switch and at the
source “flooder” machines and by the output of TICKET or
tcpdump.

Figure 6 compares the amount of data received by the
slow machine and that observed by tcpdump. Results using
a single, unshared interface and two, load-sharing interfaces
are presented.

The first noticeable feature is that the amount of data ob-
served does not change significantly when two interfaces
are used. In this case, the disk is the bottleneck, and a single
interface is sufficient to saturate disk bandwidth. Two inter-
faces with an instance of tcpdump observing each makes no
difference because there is only a single disk. The addition
of a second disk would likely increase the amount of data
saved.

The second noticeable feature is that the amount of data
received does not double when a second interface is used;
the CPU and accessory bandwidth become the bottleneck in
this case. Thus, while the machine now receives about 65%
of the traffic sent to it, it still observes only about 15%.
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Figure 6. Tcpdump, Slow Machine, Saving
Data

Figure 7 presents the same experiment on the fast ma-
chine. This figure shows approximately the same observa-
tion results as for the slow machine but with a 20-25% im-
provement in traffic observed with or without load-sharing.
The interesting feature is that the amount of data received by
the machine is nowhere near that received by the “slower”
machine. This is due primarily to the fact that the “slower”
machine has two CPUs; one can handle network interrupts
to receive data while the other runs tcpdump to observe data.
The “faster” machine has a single processor that must do
both, the amount of data observed is about the same as the
amount of data received.
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Figure 7. Tcpdump, Fast Machine, Saving
Data

Figure 8 continues with the results for tcpdump, this time
throwing away data by writing it to /dev/null. “Observed”
in this test is somewhat of a misnomer, as observation is
simply counting each packet as it is thrown away.

Again, the amount of data observed does not change sig-
nificantly when two interfaces are used. This time it is not
the disk that is the bottleneck but the massive number of
user level to kernel level copies and context switches (sev-
eral per packet). Even throwing away all data, we still only
count about 50% the packets that have been sent. Again,
load-sharing helps increase the number of packets received,
but only to 80% of what was sent.
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Figure 8. Tcpdump, Slow Machine, Not Saving
Data

Figure 9 shows the same experiment on the faster ma-
chine. As in Figure 7, we see that the amount of data ob-
served and received is about the same for each test. For the
single NIC test, we receive and count about 65% of the data
sent. For the dual NIC test, we receive all the traffic sent,
but only observe about 95% of it. This figure shows that
when we remove the disk bottleneck, the faster machine’s

one processor is able to significantly outperform the slower
machine’s two processors.

Comparison of Figure 8 with Figure 6 and Figure 9 with
Figure 7 shows the benefit that would be gained by a user
level TICKET striping over multiple machines. Figure 9
indicates that a user mode TICKET with load-sharing func-
tionality would almost be able to keep up at gigabit speeds
on the faster hardware.
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Figure 9. Tcpdump, Fast Machine, Not Saving
Data

Figure 10 presents the first TICKET data, as compared
to tcpdump. The tcpdump data is the same as in Figure 6.
From now on, we only present the amount of data observed.
The amount of data received by tcpdump has already been
shown, and the amount received by TICKET is within 0.5%
of the amount of data observed in all cases.

We see that without load-sharing, TICKET observes
about 55% of traffic sent, nearly three and a half times
the amount tcpdump is able to observe. With load-sharing,
TICKET observes over 70% of traffic sent, over four and a
half times the amount tcpdump observes.
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Figure 10. Tcpdump and TICKET, Slow Ma-
chine, Saving Data



Figure 11 shows the same experiment with the faster
machine. Without load-sharing, TICKET observes almost
70% of the data sent. This is about three times the amount
that tcpdump can observe. With load-sharing, TICKET ob-
serves 100% of the data sent! This graph also shows the
best case for tcpdump, observing only about 25% of data
sent – and thus TICKET outperforms tcpdump by a factor
of four.
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Figure 11. Tcpdump and TICKET, Fast Ma-
chine, Saving Data

Figure 12 contains data from in Figures 8 and 10, while
Figure 13 contains data from Figures 9 and 11. These new
graphs compare the cost of user level versus kernel level
execution.
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Figure 12. Tcpdump and TICKET, Slow Ma-
chine, Not Saving Data

For a single NIC, performance is similar between a ker-
nel level TICKET and a user level TICKET (tcpdump with-
out saving). This is because the bottleneck is primarily
the NIC and its inability to keep up at gigabit speeds.
When load-sharing is introduced, that bottleneck is re-
moved. Then the limiting aspects of user level code become

more prominent and the kernel mode TICKET significantly
outperforms the user level tcpdump.

Figure 13 shows the same data for the faster machine.
Performance is similar between a kernel level TICKET and
tcpdump without saving for both the single NIC and load-
sharing cases. The absence of a difference shows that given
a faster processor, the user level to kernel level copies and
context switches are less significant.
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Figure 13. Tcpdump and TICKET, Fast Ma-
chine, Not Saving Data

5. Conclusion

We have provided evidence that TICKET will consis-
tently outperform one commonly used tool by an order
of magnitude. Less commonly used custom hardware ap-
proaches may offer similar functionality, but they cost up to
$200,000 whereas our system runs on commodity hardware
that costs less than $2,000. We have also used the system in
real-world situations and found that the experimental results
presented here are a good predictor of actual performance.

In sum, we have discussed a method for collecting traf-
fic that offers many benefits: it is scalable, reliable, accu-
rate, highly precise in its measurements, and enables many
types of applications that were previously impossible. We
have provided further motivation for this approach by an in-
depth consideration of computing trends, other work, and
experimental evidence.
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